Name: \qquad
\qquad Class: \qquad

Unit 1: Notes \#1 - Transformational Geometry -Translations

Objective: Represent Transformations in the plane using transformations as functions that take points in the plane as inputs and give other points as outputs.

Essential Question:

\qquad
\qquad

Learning Targets:
-
-

A transformation is a change in the \qquad , \qquad or
\qquad of a figure.

A translation is a transformation which \qquad each point of a figure the same \qquad and in the same \qquad .

The resulting figure after a transformation is called the \qquad of the original figure.

EXAMPLE 1:

$\triangle A B C$ is translated 1 unit right and 4 units up. Draw the image $\Delta A^{\prime} B^{\prime} C^{\prime}$.

What are the coordinates of:

From EXAMPLE 1, $\quad \triangle A B C \rightarrow \triangle A^{\prime} B^{\prime} C^{\prime}$
As a general rule this translation could be written as $(x, y) \rightarrow(x+$ \qquad ,$y+$ \qquad).

EXAMPLE 2:

$\triangle J K L$ has coordinates $J(0,2), K$
$(3,4)$, and $L(5,1)$.
a) Draw $\triangle J K L$.
b) Draw the image $\Delta J^{\prime} K^{\prime} L^{\prime}$ after a translation of 4 units to the left and 5 units up. Label the triangle. What are the coordinates of:

Rule: $(x, y) \rightarrow(\quad, \quad)$
Tell me more about this figure, is it congruent or similar?

Translation Location		
	Add	Subtract
x coordinate		
y coordinate		

EXAMPLE 3:
Write a general rule which describes the translation shown below. $\triangle L M N$ is the original triangle.

$(x, y) \rightarrow(\quad, \quad)$

EXAMPLE 4:

a) Graph points $T(0,3), U(2,4)$ and $V(5,-1)$ and connect the points to make a triangle.
b) Translate $\Delta T U V$ using the rule $(x, y) \rightarrow(x-3, y-1)$.
c) In words, describe what the rule is asking you to do.
d) Draw the image $\Delta T^{\prime} U^{\prime} V^{\prime}$.
e) Identify the coordinates of $\Delta T^{\prime} U^{\prime} V^{\prime}$.

T' \qquad , U' \qquad , V^{\prime}
f) Using the image of $\Delta T^{\prime} U^{\prime} V^{\prime}$ perform an additional translation using the rule
$(x, y) \rightarrow(x+3, y-3)$.
State the new coordinates of ΔT '' $U^{\prime \prime} V^{\prime \prime}$. Is this new image congruent or similar to the original figure?

Unit 1: Translations Practice:

1) a) Use arrow notation to write a rule for the given translation.
right 5 units, up 1 unit
b) Graph and label the image after the translation.
c) Name the coordinates of the image.
A^{\prime} \qquad B' \qquad
C' \qquad D' \qquad

2) a) Use arrow notation to write a rule for the given translation.
left 3 units, down 2 units

D' \qquad
In questions 3 and 4 below, use arrow notation to write a rule that describes the translation shown on the graph.
3)

4)

5) MULTIPLE CHOICE:

Write a description of the rule $(x, y) \rightarrow(x-7, y+4)$.
(a) translation 7 units to the right and 4 units up
(b) translation 7 units to the left and 4 units down
(c) translation 7 units to the right and 4 units down
(d) translation 7 units to the left and 4 units up

Use the grid below to answer questions 6 through 8.

6. Find the rule to describe the translation from point A to point B.
7. Find the rule to describe the translation from point C to point D.
8. Find the rule to describe the translation from point E to point A.

